Comparison of Earthquake Damage Evaluation using Change Detection and Thematic Classification

Kyu-Seok Woo Ellen M. Rathje, Ph.D., P.E. Department of Civil Engineering Melba Crawford, Ph.D. Center for Space Research University of Texas at Austin

3rd International Workshop on Remote Sensing Technologiesand Disaster Response 200512 September 2005

×

Damage Detection Analysis

- Optical satellite images can provide critical information regarding earthquake damage
- Methods available to identify damage
 - Change detection (requires pre- and postearthquake images)
 - Thematic classification (requires only postearthquake image)
- Application of these methods to 2003 Bam, Iran earthquake
- Comparison of change detection and thematic classification results

2003 Bam, Iran Earthquake

2003 December 26 M_w 6.6

 Pre- and postearthquake Quickbird images

30 Sept 2003 4 Jan 2004

Change Detection

- Requires pre- and post-earthquake images
- Co-registered pre- and post- earthquake images
- Use image-to-image correlation

$$r = \frac{n\sum PV_a PV_b - \left(\sum PV_a\right)\left(\sum PV_b\right)}{\sqrt{n\sum PV_a^2 - \left(\sum PV_a\right)^2} \cdot \sqrt{n\sum PV_b^2 - \left(\sum PV_b\right)^2}}$$

 PV_a = pixel value in pre-earthquake image PV_b = pixel value in post-earthquake image n = number of pixels in correlation window

15 by 15 pixel (9 m) window used

- Earthquake damage shows changes in texture
- Use texture measures based on the graylevel co-ocurrence matrix (CM)
 - Homogeneity, dissimilarity, contrast
 - Second moment, entropy
 - Mean, variance, correlation
- Considered texture over 31 by 31 pixel window, 15 pixel horizontal shift

Change in Texture

Heavily damaged area

Results of Change Detection

Using correlation coefficient and VAR31 feature

- Red damage
- Threshold > 0.5
- Vegetation and shadow mask

Thematic Classification

- Requires only post-earthquake image
- A subset of data associated with "damaged" and "undamaged" areas is identified for training the algorithm.
- Apply Bayesian pair-wise feature selection algorithm in conjunction with a maximum likelihood classifier

Results of Thematic Classification

Using maximum-likelihood classification and 14 spectral and textural features selected by feature selection

- Red damage
- Green vegetation
- Blue buildings
- White open areas
- Cyan roads

- Defined as percentage of damaged pixels within a 60 m by 60 m (100 pixels by 100 pixels) window
- Only consider pixels that are urban area
 DIDN'T WE CHANGE THIS??
- Threshold for earthquake damage
 DI > 40%

Damage Intensity-CD

Damage Intensity-ML

Damage Intensity

ML	CD
38% of image DI3-DI5	24% of image DI3-DI5
DI3 – 5.16km ²	DI3 – 2.98km ²
DI4– 2.63km ²	DI4 – 1.79km ²
DI5– 0.44km ²	DI5 – 0.48km ²

Field Damage Survey

Comparison with Field Survey

N

Zone 1- Undamaged area

Pre-earthquake

Post-earthquake

Comparison of Results

ML Classification

Change Detection

Zone 2- Damaged area

Pre-earthquake

Post-earthquake

Comparison of Results

ML Classification

Change Detection

Conclusions

- Thematic classification identified more damage than change detection when considering the entire city
- Thematic classification is not always successful in distinguishing between different levels of severe damage

Conclusions

- Change detection distinguished better different levels of severe damage
- Change detection identified some nonearthquake change that resulted in an overestimation of damage in isolated areas
- Future work
 - Developing multi-resolution techniques
 - Advanced textural features (e.g., wavelets)
 - Hierarchical classification